logdet
logdet(M)
Log of matrix determinant. Equivalent to log(det(M))
, but may provide increased accuracy and/or speed.
Examples
-
Calculate the log determinant of a matrix:
julia> M = [1.0 2.0; 3.0 4.0]; julia> logdet(M) -2.772588722239781
This example calculates the log determinant of the matrix
M
using thelogdet
function. -
Compute the log determinant of a symmetric positive definite matrix:
julia> using LinearAlgebra julia> A = [4.0 1.0; 1.0 2.0]; julia> S = Symmetric(A); julia> logdet(S) 1.0986122886681098
Here, the
logdet
function is used to calculate the log determinant of a symmetric positive definite matrixS
. - Handle a large matrix efficiently:
julia> M = rand(1000, 1000); julia> logdet(M) -1426.930469399778
In this example, the
logdet
function efficiently computes the log determinant of a large matrixM
.
Common mistake example:
julia> A = [0.0 1.0; 1.0 0.0];
julia> logdet(A)
ERROR: PosDefException: matrix is not positive definite; Cholesky factorization failed.
In this case, the input matrix A
is not positive definite, which is a requirement for computing the log determinant. Ensure that the matrix provided is positive definite to avoid this error.
See Also
Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.