inv
inv(M)
Matrix inverse
Examples
-
Find the inverse of a matrix:
julia> M = [1 2; 3 4]; julia> inv(M) 2×2 Array{Float64,2}: -2.0 1.0 1.5 -0.5
This example calculates the inverse of the matrix
M
. -
Solve a system of linear equations using matrix inversion:
julia> A = [2 3; 4 5]; julia> b = [7, 11]; julia> x = inv(A) * b; julia> x 2-element Array{Float64,1}: -9.0 7.0
Here,
inv(A)
is used to find the inverse of matrixA
, and then it multiplies with the vectorb
to solve the linear systemAx = b
. - Handle non-invertible matrices:
julia> M = [1 2; 2 4]; julia> inv(M) ERROR: SingularException(2)
When a matrix is singular or non-invertible, the
inv
function throws aSingularException
error. It's important to check for singularity before attempting to find the inverse.
Common mistake example:
julia> M = [1 2; 3 4];
julia> inv(M)
ERROR: LinearAlgebra.SingularException(2)
In this example, the matrix M
is not invertible because it is singular. The inv
function throws a SingularException
error when a matrix is non-invertible. Ensure that the matrix is invertible before using inv
.
See Also
Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.