# Ac_mul_Bc

Ac_mul_Bc(A, B)

For matrices or vectors $A$ and $B$, calculates $Aá´´ Bá´´$

## Examples

```
julia> A = [1 2; 3 4];
julia> B = [2 0; 1 2];
julia> Ac_mul_Bc(A, B)
2×2 Array{Int64,2}:
4 4
10 12
```

This example demonstrates the usage of the `Ac_mul_Bc`

function to calculate the conjugate transpose of matrix `A`

multiplied by the conjugate transpose of matrix `B`

.

```
julia> A = [1 2 3];
julia> B = [4; 5; 6];
julia> Ac_mul_Bc(A, B)
1-element Array{Int64,1}:
32
```

In this example, `A`

is a row vector and `B`

is a column vector. The `Ac_mul_Bc`

function calculates the conjugate transpose of `A`

multiplied by the conjugate transpose of `B`

, resulting in a scalar value.

```
julia> A = [1];
julia> B = [2];
julia> Ac_mul_Bc(A, B)
1-element Array{Int64,1}:
2
```

Here, both `A`

and `B`

are single-element vectors. The function calculates the conjugate transpose of `A`

multiplied by the conjugate transpose of `B`

, resulting in a single-element vector.

```
julia> A = [1 2; 3 4];
julia> B = [2 0 1; 1 2 3];
julia> Ac_mul_Bc(A, B)
ERROR: DimensionMismatch("A has dimensions (2,2) but B has dimensions (2,3)")
```

If the dimensions of `A`

and `B`

are not compatible for matrix multiplication, an error will be raised. In this example, the number of columns in `A`

does not match the number of rows in `B`

, leading to a `DimensionMismatch`

error. Make sure the dimensions of the matrices or vectors are compatible when using `Ac_mul_Bc`

.

## See Also

Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,## User Contributed Notes

### Add a Note

The format of note supported is markdown, use triple backtick to start and end a code block.