A_ldiv_Bc(A, B)

For matrices or vectors $A$ and $B$, calculates $A$ \ $Bá´´$


  1. Calculate matrix-matrix product:

    julia> A = [1 2; 3 4];
    julia> B = [5 6; 7 8];
    julia> A_ldiv_Bc(A, B)
    2×2 Array{Complex{Int64},2}:
    -31+0im  -37+0im
    -69+0im  -83+0im

    This example calculates the matrix product of A and Bᴴ.

  2. Calculate matrix-vector product:

    julia> A = [1 2; 3 4];
    julia> B = [5; 6];
    julia> A_ldiv_Bc(A, B)
    2-element Array{Complex{Int64},1}:
    -17 + 0im
    -39 + 0im

    It calculates the matrix-vector product of A and Bᴴ.

  3. Handle complex numbers:
    julia> A = [1+2im 3+4im; 5+6im 7+8im];
    julia> B = [9+10im 11+12im; 13+14im 15+16im];
    julia> A_ldiv_Bc(A, B)
    2×2 Array{Complex{Int64},2}:
    -38-166im  -44-202im
    -86-390im  -100-458im

    It correctly handles complex numbers in the matrices.

Common mistake example:

julia> A = [1 2; 3 4];
julia> B = [5 6 7; 8 9 10];
julia> A_ldiv_Bc(A, B)
ERROR: DimensionMismatch("matrix A has dimensions (2,2), matrix B has dimensions (2,3)")

In this example, the dimensions of A and B are incompatible for matrix multiplication. Make sure the number of columns in A matches the number of rows in B to perform matrix multiplication using A_ldiv_Bc.

See Also

Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,

User Contributed Notes

Add a Note

The format of note supported is markdown, use triple backtick to start and end a code block.

*Required Field

Checking you are not a robot: