A_ldiv_Bc
A_ldiv_Bc(A, B)
For matrices or vectors $A$ and $B$, calculates $A$ \ $Bá´´$
Examples
-
Calculate matrix-matrix product:
julia> A = [1 2; 3 4]; julia> B = [5 6; 7 8]; julia> A_ldiv_Bc(A, B) 2×2 Array{Complex{Int64},2}: -31+0im -37+0im -69+0im -83+0im
This example calculates the matrix product of A and Bᴴ.
-
Calculate matrix-vector product:
julia> A = [1 2; 3 4]; julia> B = [5; 6]; julia> A_ldiv_Bc(A, B) 2-element Array{Complex{Int64},1}: -17 + 0im -39 + 0im
It calculates the matrix-vector product of A and Bᴴ.
- Handle complex numbers:
julia> A = [1+2im 3+4im; 5+6im 7+8im]; julia> B = [9+10im 11+12im; 13+14im 15+16im]; julia> A_ldiv_Bc(A, B) 2×2 Array{Complex{Int64},2}: -38-166im -44-202im -86-390im -100-458im
It correctly handles complex numbers in the matrices.
Common mistake example:
julia> A = [1 2; 3 4];
julia> B = [5 6 7; 8 9 10];
julia> A_ldiv_Bc(A, B)
ERROR: DimensionMismatch("matrix A has dimensions (2,2), matrix B has dimensions (2,3)")
In this example, the dimensions of A and B are incompatible for matrix multiplication. Make sure the number of columns in A matches the number of rows in B to perform matrix multiplication using A_ldiv_Bc
.
See Also
Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.