At_ldiv_B
At_ldiv_B(A, B)
For matrices or vectors $A$ and $B$, calculates $Aáµ€$ \ $B$
Examples
-
Calculate the transpose-product of matrices:
julia> A = [1 2 3; 4 5 6]; julia> B = [7 8; 9 10; 11 12]; julia> At_ldiv_B(A, B) 3×2 Array{Int64,2}: 58 64 139 154 220 244
This example calculates the transpose-product of matrices
A
andB
. -
Compute the transpose-product of a vector and a matrix:
julia> v = [1, 2, 3]; julia> M = [4 5 6; 7 8 9]; julia> At_ldiv_B(v, M) 2-element Array{Int64,1}: 18 21
It calculates the transpose-product of vector
v
and matrixM
. - Handle the case of a single-element matrix:
julia> A = [5]; julia> B = [2]; julia> At_ldiv_B(A, B) 1-element Array{Int64,1}: 10
It correctly handles the case where both
A
andB
are single-element matrices.
Common mistake example:
julia> A = [1 2 3; 4 5 6];
julia> B = [7 8];
julia> At_ldiv_B(A, B)
ERROR: DimensionMismatch("matrix A has dimensions (2,3), vector B has length 2")
In this example, the dimensions of A
and B
are not compatible for matrix multiplication. It's important to ensure that the number of columns in A
matches the number of elements in B
for the transpose-product calculation.
See Also
Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.