A_rdiv_Bt
A_rdiv_Bt(A, B)
For matrices or vectors $A$ and $B$, calculates $A / Báµ€$
Examples
-
Calculate matrix division:
julia> A = [1 2 3; 4 5 6; 7 8 9]; julia> B = [2 0 1; 3 2 1; 1 1 1]; julia> A_rdiv_Bt(A, B) 3×3 Array{Float64,2}: -1.0 1.0 0.0 2.0 -1.0 0.0 -1.0 1.0 0.0
This example calculates the matrix division of
A
byBᵀ
. -
Calculate vector division:
julia> v1 = [1, 2, 3]; julia> v2 = [4, 5, 6]; julia> A_rdiv_Bt(v1, v2) 3×1 Array{Float64,2}: -1.0 1.0 0.0
It calculates the division of the vector
v1
byv2ᵀ
. - Handle edge cases with empty matrices:
julia> empty_matrix = zeros(0, 0); julia> A_rdiv_Bt(empty_matrix, empty_matrix) 0×0 Array{Float64,2}
It correctly handles the case where both matrices are empty.
Common mistake example:
julia> A = [1 2; 3 4];
julia> B = [5 6];
julia> A_rdiv_Bt(A, B)
ERROR: DimensionMismatch("A has dimensions (2,2) but Bᵀ has dimensions (1,2)")
In this example, the dimensions of matrix A
and the transpose of matrix B
are not compatible for division. It's crucial to make sure that the dimensions are compatible before using A_rdiv_Bt
.
See Also
Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.