A_mul_B!
A_mul_B!(Y, A, B) -> Y
Calculates the matrix-matrix or matrix-vector product $Aâ‹…B$ and stores the
result in Y
, overwriting the existing value of Y
. Note that Y
must not
be aliased with either A
or B
.
julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; Y = similar(B); A_mul_B!(Y, A, B);
julia> Y
2x2 Array{Float64,2}:
3.0 3.0
7.0 7.0
Examples
-
Matrix-matrix multiplication:
julia> A = [1.0 2.0; 3.0 4.0]; julia> B = [1.0 1.0; 1.0 1.0]; julia> Y = similar(B); julia> A_mul_B!(Y, A, B); julia> Y 2×2 Array{Float64,2}: 3.0 3.0 7.0 7.0
This example calculates the matrix-matrix product
A⋅B
and stores the result inY
. -
Matrix-vector multiplication:
julia> A = [1.0 2.0; 3.0 4.0]; julia> B = [1.0, 1.0]; julia> Y = similar(B); julia> A_mul_B!(Y, A, B); julia> Y 2-element Array{Float64,1}: 3.0 7.0
It performs the matrix-vector multiplication
A⋅B
and stores the result inY
. - Avoid aliasing:
julia> A = [1.0 2.0; 3.0 4.0]; julia> B = [1.0 1.0; 1.0 1.0]; julia> A_mul_B!(A, A, B); # Aliasing A with itself ERROR: Mutating arrays is not allowed inside a loop
It's important to avoid aliasing
Y
with eitherA
orB
. Mutating the arrays being multiplied inside the function call can lead to errors.
See Also
Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.