At_mul_Bt
At_mul_Bt(A, B)
For matrices or vectors $A$ and $B$, calculates $Aᵀ⋅Bᵀ$
Examples
-
Calculate the matrix product of two matrices:
julia> A = [1 2; 3 4; 5 6]; julia> B = [7 8 9; 10 11 12]; julia> At_mul_Bt(A, B) 2×2 Array{Int64,2}: 27 39 30 42
This example calculates the matrix product of the transpose of matrix
A
and the transpose of matrixB
. -
Multiply a matrix and a vector:
julia> A = [1 2 3; 4 5 6]; julia> B = [7, 8, 9]; julia> At_mul_Bt(A, B) 3-element Array{Int64,1}: 50 122 194
It calculates the product of the transpose of matrix
A
and vectorB
. - Handle edge cases with empty matrices:
julia> A = zeros(0, 3); julia> B = [1, 2, 3]; julia> At_mul_Bt(A, B) 0-element Array{Float64,1}
It correctly handles the case where one of the matrices is empty.
Common mistake example:
julia> A = [1 2; 3 4];
julia> B = [5, 6, 7];
julia> At_mul_Bt(A, B)
ERROR: DimensionMismatch("A has dimensions (2, 2) but B has dimensions (3,)")
In this example, the dimensions of matrices A
and B
are incompatible for matrix multiplication. It's important to ensure that the number of columns in A
matches the number of rows in B
for matrix multiplication to be valid.
See Also
Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.