At_ldiv_Bt

At_ldiv_Bt(A, B)

For matrices or vectors $A$ and $B$, calculates $Aáµ€$ \ $Báµ€$

Examples

In the Julia programming language, the function At_ldiv_Bt(A, B) calculates the transpose of matrix or vector A multiplied by the transpose of matrix or vector B.

julia> A = [1 2 3; 4 5 6];
julia> B = [7 8 9; 10 11 12];
julia> At_ldiv_Bt(A, B)
3×3 Array{Int64,2}:
  27   30   33
  60   66   72
  93  102  111

Here are some common examples of its use:

  1. Calculate the transpose of two vectors:

    julia> v1 = [1, 2, 3];
    julia> v2 = [4, 5, 6];
    julia> At_ldiv_Bt(v1, v2)
    3×3 Array{Int64,2}:
     4   5   6
     8  10  12
    12  15  18
  2. Perform matrix multiplication with transposed matrices:

    julia> A = [1 2; 3 4; 5 6];
    julia> B = [7 8 9; 10 11 12];
    julia> At_ldiv_Bt(A, B)
    2×2 Array{Int64,2}:
     58   64
     67   74
  3. Calculate the transpose of a matrix multiplied by a vector:
    julia> A = [1 2 3; 4 5 6];
    julia> v = [7, 8, 9];
    julia> At_ldiv_Bt(A, v)
    3×1 Array{Int64,2}:
     50
     122
     194

Please note that the At_ldiv_Bt function requires compatible dimensions between the matrices or vectors A and B for the transpose multiplication to be valid.

See Also

Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,

User Contributed Notes

Add a Note

The format of note supported is markdown, use triple backtick to start and end a code block.

*Required Field
Details

Checking you are not a robot: