At_ldiv_Bt
At_ldiv_Bt(A, B)
For matrices or vectors $A$ and $B$, calculates $Aáµ€$ \ $Báµ€$
Examples
In the Julia programming language, the function At_ldiv_Bt(A, B)
calculates the transpose of matrix or vector A
multiplied by the transpose of matrix or vector B
.
julia> A = [1 2 3; 4 5 6];
julia> B = [7 8 9; 10 11 12];
julia> At_ldiv_Bt(A, B)
3×3 Array{Int64,2}:
27 30 33
60 66 72
93 102 111
Here are some common examples of its use:
-
Calculate the transpose of two vectors:
julia> v1 = [1, 2, 3]; julia> v2 = [4, 5, 6]; julia> At_ldiv_Bt(v1, v2) 3×3 Array{Int64,2}: 4 5 6 8 10 12 12 15 18
-
Perform matrix multiplication with transposed matrices:
julia> A = [1 2; 3 4; 5 6]; julia> B = [7 8 9; 10 11 12]; julia> At_ldiv_Bt(A, B) 2×2 Array{Int64,2}: 58 64 67 74
- Calculate the transpose of a matrix multiplied by a vector:
julia> A = [1 2 3; 4 5 6]; julia> v = [7, 8, 9]; julia> At_ldiv_Bt(A, v) 3×1 Array{Int64,2}: 50 122 194
Please note that the At_ldiv_Bt
function requires compatible dimensions between the matrices or vectors A
and B
for the transpose multiplication to be valid.
See Also
Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.