cond
cond(M, [p])
Condition number of the matrix M
, computed using the operator p
-norm. Valid values for p
are 1
, 2
(default), or Inf
.
Examples
julia> A = [1 2 3; 4 5 6; 7 8 9]
3×3 Array{Int64,2}:
1 2 3
4 5 6
7 8 9
julia> cond(A)
16.84810335261421
julia> cond(A, 1)
18.0
julia> cond(A, 2)
16.84810335261421
julia> cond(A, Inf)
26.0
Examples:
-
Compute the condition number of a matrix using the default
2
-norm:julia> A = [1 2; 3 4]; julia> cond(A) 14.933034373659268
This example calculates the condition number of matrix
A
using the default2
-norm. -
Compute the condition number of a matrix using the
1
-norm:julia> B = [1 2 3; 4 5 6; 7 8 9]; julia> cond(B, 1) 18.0
Here, the condition number of matrix
B
is computed using the1
-norm. - Compute the condition number of a matrix using the
Inf
-norm:julia> C = [1 2 3; 4 5 6; 7 8 9]; julia> cond(C, Inf) 26.0
This example calculates the condition number of matrix
C
using theInf
-norm.
Common mistake example:
julia> D = [0 0; 0 0];
julia> cond(D)
ERROR: LinearAlgebra.SingularException(0)
In this example, the matrix D
is singular, causing a SingularException
to be thrown. The cond
function expects a non-singular matrix to calculate the condition number.
See Also
Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.