erfcx
erfcx(x)
Compute the scaled complementary error function of x
,
defined by $e^{x^2} \operatorname{erfc}(x)$. Note
also that $\operatorname{erfcx}(-ix)$ computes the
Faddeeva function $w(x)$.
Examples
julia> erfcx(0.5)
1.2074502803173123
julia> erfcx(-1.0im)
(-1.6506801238857845 - 0.4504470036145381im)
-
Compute the scaled complementary error function of a number:
julia> erfcx(0.5) 1.2074502803173123
This example calculates the erfcx value for the number 0.5.
- Compute the Faddeeva function using the imaginary number:
julia> erfcx(-1.0im) (-1.6506801238857845 - 0.4504470036145381im)
The erfcx function can also be used to compute the Faddeeva function using the imaginary number
-ix
.
Please note that the erfcx function computes the scaled complementary error function erfc(x)
defined by e^(x^2) * erfc(x)
. It is worth mentioning that erfcx(-ix)
calculates the Faddeeva function w(x)
.
See Also
abs2, beta, binomial, ceil, cell, cross, ctranspose, ctranspose!, cummin, cumprod, cumprod!, cumsum, cumsum!, cumsum_kbn, div, divrem, eigfact, eigfact!, eigmin, eps, erf, erfc, erfcinv, erfcx, erfi, erfinv, exp, exp10, exp2, expm1, exponent, factor, factorial, factorize, floor, gcd, invmod, log, log10, log1p, log2, logspace, max, min, mod, mod1, modf, next, nextpow, nextprod, num, primes, primesmask, prod, realmin, sqrt, sum!, sumabs, sumabs!, sumabs2, sumabs2!,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.