Compute the complementary error function of x, defined by $1 - \operatorname{erf}(x)$.


julia> A = rand(10,5)
       b = rand(10)
       x = A \ b
       B = A' * A
       erfc(eigvals(B)) - 2x.^2 + 4x - 6

5-element Array{Float64,1}:
julia> erfc(1.0)

The erfc function in Julia computes the complementary error function of x, which is defined as 1 - erf(x). The complementary error function is commonly used in probability theory and statistics.

Here's an example of how to use the erfc function:

julia> x = 2.5;
julia> erfc(x)

In this example, erfc(2.5) returns the value 0.004677734981047265, which is the complementary error function of 2.5.

It's important to note that the erfc function expects a numeric input and returns a numeric output.

See Also

abs2, beta, binomial, ceil, cell, cross, ctranspose, ctranspose!, cummin, cumprod, cumprod!, cumsum, cumsum!, cumsum_kbn, div, divrem, eigfact, eigfact!, eigmin, eps, erf, erfc, erfcinv, erfcx, erfi, erfinv, exp, exp10, exp2, expm1, exponent, factor, factorial, factorize, floor, gcd, invmod, log, log10, log1p, log2, logspace, max, min, mod, mod1, modf, next, nextpow, nextprod, num, primes, primesmask, prod, realmin, sqrt, sum!, sumabs, sumabs!, sumabs2, sumabs2!,

User Contributed Notes

Add a Note

The format of note supported is markdown, use triple backtick to start and end a code block.

*Required Field

Checking you are not a robot: