ctranspose
ctranspose(A)
The conjugate transposition operator ('
).
Examples
-
Conjugate transpose of a matrix:
julia> A = [1+2im 3+4im; 5+6im 7+8im]; julia> B = ctranspose(A) 2×2 LinearAlgebra.Adjoint{Complex{Int64},Array{Complex{Int64},2}}: 1-2im 5-6im 3-4im 7-8im
This example computes the conjugate transpose of matrix
A
using thectranspose
function and stores it in matrixB
. -
Conjugate transpose of a vector:
julia> v = [1+2im, 3+4im, 5+6im]; julia> w = ctranspose(v) 1×3 LinearAlgebra.Adjoint{Complex{Int64},Array{Complex{Int64},1}}: 1-2im 3-4im 5-6im
It computes the conjugate transpose of the vector
v
usingctranspose
and assigns the result to vectorw
. - Conjugate transpose of a scalar:
julia> x = 1+2im; julia> y = ctranspose(x) 1×1 LinearAlgebra.Adjoint{Complex{Int64},Complex{Int64}}: 1-2im
It calculates the conjugate transpose of the scalar complex number
x
and assigns it toy
.
Common mistake example:
julia> M = [1 2 3; 4 5 6];
julia> T = ctranspose(M)
ERROR: MethodError: no method matching ctranspose(::Array{Int64,2})
In this example, the ctranspose
function is applied to a non-complex matrix M
. The ctranspose
function is specifically designed for complex numbers and matrices. Make sure to use it with appropriate complex inputs.
See Also
abs2, beta, binomial, ceil, cell, cross, ctranspose, ctranspose!, cummin, cumprod, cumprod!, cumsum, cumsum!, cumsum_kbn, div, divrem, eigfact, eigfact!, eigmin, eps, erf, erfc, erfcinv, erfcx, erfi, erfinv, exp, exp10, exp2, expm1, exponent, factor, factorial, factorize, floor, gcd, invmod, log, log10, log1p, log2, logspace, max, min, mod, mod1, modf, next, nextpow, nextprod, num, primes, primesmask, prod, realmin, sqrt, sum!, sumabs, sumabs!, sumabs2, sumabs2!,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.