The conjugate transposition operator (').


  1. Conjugate transpose of a matrix:

    julia> A = [1+2im 3+4im; 5+6im 7+8im];
    julia> B = ctranspose(A)
    2×2 LinearAlgebra.Adjoint{Complex{Int64},Array{Complex{Int64},2}}:
    1-2im  5-6im
    3-4im  7-8im

    This example computes the conjugate transpose of matrix A using the ctranspose function and stores it in matrix B.

  2. Conjugate transpose of a vector:

    julia> v = [1+2im, 3+4im, 5+6im];
    julia> w = ctranspose(v)
    1×3 LinearAlgebra.Adjoint{Complex{Int64},Array{Complex{Int64},1}}:
    1-2im  3-4im  5-6im

    It computes the conjugate transpose of the vector v using ctranspose and assigns the result to vector w.

  3. Conjugate transpose of a scalar:
    julia> x = 1+2im;
    julia> y = ctranspose(x)
    1×1 LinearAlgebra.Adjoint{Complex{Int64},Complex{Int64}}:

    It calculates the conjugate transpose of the scalar complex number x and assigns it to y.

Common mistake example:

julia> M = [1 2 3; 4 5 6];
julia> T = ctranspose(M)
ERROR: MethodError: no method matching ctranspose(::Array{Int64,2})

In this example, the ctranspose function is applied to a non-complex matrix M. The ctranspose function is specifically designed for complex numbers and matrices. Make sure to use it with appropriate complex inputs.

See Also

abs2, beta, binomial, ceil, cell, cross, ctranspose, ctranspose!, cummin, cumprod, cumprod!, cumsum, cumsum!, cumsum_kbn, div, divrem, eigfact, eigfact!, eigmin, eps, erf, erfc, erfcinv, erfcx, erfi, erfinv, exp, exp10, exp2, expm1, exponent, factor, factorial, factorize, floor, gcd, invmod, log, log10, log1p, log2, logspace, max, min, mod, mod1, modf, next, nextpow, nextprod, num, primes, primesmask, prod, realmin, sqrt, sum!, sumabs, sumabs!, sumabs2, sumabs2!,

User Contributed Notes

Add a Note

The format of note supported is markdown, use triple backtick to start and end a code block.

*Required Field

Checking you are not a robot: