beta
beta(x, y)
Euler integral of the first kind $\operatorname{B}(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$.
Examples
In the Julia programming language, the function beta(x, y) calculates the Euler integral of the first kind, also known as the beta function. It is defined as:
julia> beta(x, y)
The beta function is calculated as Gamma(x) * Gamma(y) / Gamma(x + y), where Gamma represents the gamma function.
Here are some examples of how to use the beta function:
-
Calculate the beta function for positive integers:
julia> beta(3, 4) 0.03333333333333333This example calculates the beta function for
x = 3andy = 4. -
Calculate the beta function for non-integer values:
julia> beta(0.5, 0.5) 3.141592653589793It calculates the beta function for
x = 0.5andy = 0.5. - Calculate the beta function with variables:
julia> x = 2; julia> y = 3; julia> beta(x, y) 0.08333333333333333In this example, the beta function is calculated using variables
xandy.
It is important to note that the beta function requires the Gamma function, so make sure that the Gamma function is available when using the beta function.
See Also
abs2, beta, binomial, ceil, cell, cross, ctranspose, ctranspose!, cummin, cumprod, cumprod!, cumsum, cumsum!, cumsum_kbn, div, divrem, eigfact, eigfact!, eigmin, eps, erf, erfc, erfcinv, erfcx, erfi, erfinv, exp, exp10, exp2, expm1, exponent, factor, factorial, factorize, floor, gcd, invmod, log, log10, log1p, log2, logspace, max, min, mod, mod1, modf, next, nextpow, nextprod, num, primes, primesmask, prod, realmin, sqrt, sum!, sumabs, sumabs!, sumabs2, sumabs2!,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.