beta
beta(x, y)
Euler integral of the first kind $\operatorname{B}(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$.
Examples
In the Julia programming language, the function beta(x, y)
calculates the Euler integral of the first kind, also known as the beta function. It is defined as:
julia> beta(x, y)
The beta function is calculated as Gamma(x) * Gamma(y) / Gamma(x + y)
, where Gamma
represents the gamma function.
Here are some examples of how to use the beta
function:
-
Calculate the beta function for positive integers:
julia> beta(3, 4) 0.03333333333333333
This example calculates the beta function for
x = 3
andy = 4
. -
Calculate the beta function for non-integer values:
julia> beta(0.5, 0.5) 3.141592653589793
It calculates the beta function for
x = 0.5
andy = 0.5
. - Calculate the beta function with variables:
julia> x = 2; julia> y = 3; julia> beta(x, y) 0.08333333333333333
In this example, the beta function is calculated using variables
x
andy
.
It is important to note that the beta
function requires the Gamma
function, so make sure that the Gamma
function is available when using the beta
function.
See Also
abs2, beta, binomial, ceil, cell, cross, ctranspose, ctranspose!, cummin, cumprod, cumprod!, cumsum, cumsum!, cumsum_kbn, div, divrem, eigfact, eigfact!, eigmin, eps, erf, erfc, erfcinv, erfcx, erfi, erfinv, exp, exp10, exp2, expm1, exponent, factor, factorial, factorize, floor, gcd, invmod, log, log10, log1p, log2, logspace, max, min, mod, mod1, modf, next, nextpow, nextprod, num, primes, primesmask, prod, realmin, sqrt, sum!, sumabs, sumabs!, sumabs2, sumabs2!,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.