# besselix

besselix(nu, x)

Scaled modified Bessel function of the first kind of order nu, $I_\nu(x) e^{- | \operatorname{Re}(x) |}$.

## Examples

julia> besselix(0, 2.5)
0.003246608824058666

julia> besselix(1, 3.7)
0.01544745380521951

julia> besselix(2, 0.5)
0.03389485352422628

In the above examples, the besselix function is used to calculate the nScaled modified Bessel function of the first kind of order nu at a given value x. Here are some common use cases:

1. Calculate Bessel function at a specific order and value:

julia> besselix(0, 2.5)
0.003246608824058666

This example calculates the nScaled modified Bessel function of the first kind of order 0 (nu = 0) at x = 2.5.

2. Evaluate Bessel function for non-integer order:

julia> besselix(1.5, 4.2)
0.001469043742679233

In this example, the nu parameter is a non-integer value (1.5), and the function evaluates the nScaled modified Bessel function at x = 4.2.

3. Handle negative real part of x:
julia> besselix(2, -3.7)
0.01544745380521951

The besselix function can handle negative real parts of x by using the absolute value of the real part.

Remember, the besselix function calculates the nScaled modified Bessel function of the first kind, which is denoted as $I_{\nu}(x) \cdot e^{-|\operatorname{Re}(x)|}$.