..  expm(A)

Compute the matrix exponential of ``A``, defined by

.. math::

   e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}.

For symmetric or Hermitian ``A``, an eigendecomposition (:func:`eigfact`) is used, otherwise the scaling and squaring algorithm (see [H05]_) is chosen.

.. [H05] Nicholas J. Higham, "The squaring and scaling method for the matrix
   exponential revisited", SIAM Journal on Matrix Analysis and Applications,
   26(4), 2005, 1179-1193.
   `doi:10.1137/090768539 <http://dx.doi.org/10.1137/090768539>`_


See Also

Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,

User Contributed Notes

Add a Note

The format of note supported is markdown, use triple backtick to start and end a code block.

*Required Field

Checking you are not a robot: