..  eigvecs(A, [eigvals,][permute=true,][scale=true]) -> Matrix

Returns a matrix ``M`` whose columns are the eigenvectors of ``A``.
(The ``k``\ th eigenvector can be obtained from the slice ``M[:, k]``.)
The ``permute`` and ``scale`` keywords are the same as for :func:`eigfact`.

For :class:`SymTridiagonal` matrices, if the optional vector of eigenvalues
``eigvals`` is specified, returns the specific corresponding eigenvectors.


See Also

Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,

User Contributed Notes

Add a Note

The format of note supported is markdown, use triple backtick to start and end a code block.

*Required Field

Checking you are not a robot: