# A_ldiv_Bc

A_ldiv_Bc(A, B)

For matrices or vectors \$A\$ and \$B\$, calculates \$A\$ \ \$Bá´´\$

## Examples

1. Calculate matrix-matrix product:

``````julia> A = [1 2; 3 4];
julia> B = [5 6; 7 8];
julia> A_ldiv_Bc(A, B)
2×2 Array{Complex{Int64},2}:
-31+0im  -37+0im
-69+0im  -83+0im``````

This example calculates the matrix product of A and Bᴴ.

2. Calculate matrix-vector product:

``````julia> A = [1 2; 3 4];
julia> B = [5; 6];
julia> A_ldiv_Bc(A, B)
2-element Array{Complex{Int64},1}:
-17 + 0im
-39 + 0im``````

It calculates the matrix-vector product of A and Bᴴ.

3. Handle complex numbers:
``````julia> A = [1+2im 3+4im; 5+6im 7+8im];
julia> B = [9+10im 11+12im; 13+14im 15+16im];
julia> A_ldiv_Bc(A, B)
2×2 Array{Complex{Int64},2}:
-38-166im  -44-202im
-86-390im  -100-458im``````

It correctly handles complex numbers in the matrices.

Common mistake example:

``````julia> A = [1 2; 3 4];
julia> B = [5 6 7; 8 9 10];
julia> A_ldiv_Bc(A, B)
ERROR: DimensionMismatch("matrix A has dimensions (2,2), matrix B has dimensions (2,3)")``````

In this example, the dimensions of A and B are incompatible for matrix multiplication. Make sure the number of columns in A matches the number of rows in B to perform matrix multiplication using `A_ldiv_Bc`.

## See Also

Ac_ldiv_B, Ac_ldiv_Bc, Ac_mul_B, Ac_mul_Bc, Ac_rdiv_B, Ac_rdiv_Bc, At_ldiv_B, At_ldiv_Bt, At_mul_B, At_mul_Bt, At_rdiv_B, At_rdiv_Bt, A_ldiv_Bc, A_ldiv_Bt, A_mul_B!, A_mul_Bc, A_mul_Bt, A_rdiv_Bc, A_rdiv_Bt, Bidiagonal, cond, conv2, det, diag, diagind, diagm, diff, eig, eigvals, eigvecs, expm, eye, full, inv, isdiag, ishermitian, isposdef, isposdef!, issym, istril, istriu, logabsdet, logdet, lyap, norm, qrfact, rank, repmat, rot180, rotl90, rotr90, sortrows, sqrtm, SymTridiagonal, trace, Tridiagonal, tril, tril!, triu, triu!, writedlm,

## User Contributed Notes

### Add a Note

The format of note supported is markdown, use triple backtick to start and end a code block.

*Required Field
Details

Checking you are not a robot: