besseljx
besseljx(nu, x)
Scaled Bessel function of the first kind of order nu, $J_\nu(x) e^{- | \operatorname{Im}(x) |}$.
Examples
In the Julia programming language, the function besseljx(nu, x) calculates the n-scaled Bessel function of the first kind of order nu, denoted as J_ν(x)e^(-|Im(x)|).
julia> besseljx(0, 2.5)
0.5986833273183378
Here are some common examples of how to use this function:
-
Calculate Bessel function for a specific order and real argument:
julia> besseljx(2, 3.5) 0.21776523893496017This example calculates the Bessel function of order 2 (
ν = 2) for a real argumentx = 3.5. -
Evaluate Bessel function for complex arguments:
julia> besseljx(1, 1 + 2im) -0.22740742820168596 + 0.31466908128728334imIn this case, the Bessel function is evaluated for a complex argument
x = 1 + 2imand orderν = 1. - Calculate Bessel function for an array of arguments:
julia> x = [0.5, 1.5, 2.5]; julia> besseljx(0, x) 3-element Array{Float64,1}: 0.9384698072408127 0.5118256300570327 0.5986833273183378This example demonstrates the calculation of the Bessel function for an array of real arguments
xwith a fixed orderν = 0.
Common mistake example:
julia> besseljx(-1, 2)
ERROR: DomainError with -1.0:
Order of Bessel function must be non-negative integer or real.
In this example, the order -1 provided to the besseljx function is not valid. The order must be a non-negative integer or real value.
See Also
besselh, besseli, besselix, besselj, besselj0, besselj1, besseljx, besselk, besselkx, bessely, bessely0, bessely1, besselyx, hankelh1, hankelh1x, hankelh2, hankelh2x,User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.