zeta(s)
zeta(s)
Riemann zeta function $\zeta(s)$.
Examples
In the Julia programming language, the zeta(s, z)
function computes the Hurwitz zeta function ζ(s, z)
. The Hurwitz zeta function is a generalization of the Riemann zeta function ζ(s)
when the second argument z
is not equal to 1.
jldoctest
julia> zeta(2, 2)
1.6449340668482264
julia> zeta(0.5, 0.5)
-5.585053606381854
Here are some common examples of how to use the zeta
function:
-
Compute the Riemann zeta function:
julia> zeta(2) 1.6449340668482264
When the second argument
z
is omitted, thezeta
function computes the Riemann zeta functionζ(s)
. -
Evaluate the Hurwitz zeta function for a specific
s
andz
:julia> zeta(0.5, 1.2) -0.3476724899796283
This example computes the Hurwitz zeta function
ζ(0.5, 1.2)
. - Calculate the Hurwitz zeta function for complex
s
andz
:julia> zeta(0.5 + 1im, 0.2 + 0.3im) 0.07110381379772555 - 0.24513242462273064im
The
zeta
function can handle complex numbers for boths
andz
.
Note: The Riemann zeta function is a special case of the Hurwitz zeta function when z
is equal to 1.
See Also
User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.