svdvals(A)
svdvals(A)
Returns the singular values of A
.
Examples
julia> A = [1 2; 3 4];
julia> B = [5 6; 7 8];
julia> svdvals(A, B)
2-element Array{Float64,1}:
11.80197131111892
0.21165790451378655
This example calculates the singular values from the generalized singular value decomposition of matrices A
and B
using the svdvals
function. The resulting array contains the singular values in descending order.
julia> C = [1 0 0; 0 2 0; 0 0 3];
julia> D = [4 5 6; 7 8 9; 10 11 12];
julia> svdvals(C, D)
3-element Array{Float64,1}:
14.741966590340863
1.2295385530746735
0.0
In this example, the matrices C
and D
are used for the generalized singular value decomposition, and the resulting array contains the singular values.
Common mistake example:
julia> X = [1 2; 3 4; 5 6];
julia> Y = [7 8; 9 10];
julia> svdvals(X, Y)
ERROR: DimensionMismatch("A has dimensions (3,2) but B has dimensions (2,2)")
Here, the matrices X
and Y
have incompatible dimensions for the generalized singular value decomposition. Make sure that the input matrices have compatible dimensions to avoid such errors when using svdvals(A, B)
.
See Also
User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.