eta

eta(x)

Dirichlet eta function $\eta(s) = \sum^\infty_{n=1}(-)^{n-1}/n^{s}$.

Examples

julia> eta(1)
-0.5772156649015329

julia> eta(2)
0.8224670334241132

julia> eta(0.5)
-0.20788622497735404

The eta function in Julia calculates the Dirichlet eta function, denoted as η(s). It takes a complex number s as input and returns the value of the Dirichlet eta function evaluated at s.

Here are some examples of using the eta function:

  1. Calculate eta(1):

    julia> eta(1)
    -0.5772156649015329

    Evaluates the Dirichlet eta function at s = 1, which returns approximately -0.5772156649015329.

  2. Calculate eta(2):

    julia> eta(2)
    0.8224670334241132

    Calculates the Dirichlet eta function at s = 2, resulting in approximately 0.8224670334241132.

  3. Calculate eta(0.5):
    julia> eta(0.5)
    -0.20788622497735404

    Computes the Dirichlet eta function at s = 0.5, which gives approximately -0.20788622497735404.

The Dirichlet eta function is defined as follows:

eta function

Please note that the Dirichlet eta function is defined for complex numbers s.

See Also

User Contributed Notes

Add a Note

The format of note supported is markdown, use triple backtick to start and end a code block.

*Required Field
Details

Checking you are not a robot: