eta
eta(x)
Dirichlet eta function $\eta(s) = \sum^\infty_{n=1}(-)^{n-1}/n^{s}$.
Examples
julia> eta(1)
-0.5772156649015329
julia> eta(2)
0.8224670334241132
julia> eta(0.5)
-0.20788622497735404
The eta
function in Julia calculates the Dirichlet eta function, denoted as η(s). It takes a complex number s
as input and returns the value of the Dirichlet eta function evaluated at s
.
Here are some examples of using the eta
function:
-
Calculate eta(1):
julia> eta(1) -0.5772156649015329
Evaluates the Dirichlet eta function at
s = 1
, which returns approximately -0.5772156649015329. -
Calculate eta(2):
julia> eta(2) 0.8224670334241132
Calculates the Dirichlet eta function at
s = 2
, resulting in approximately 0.8224670334241132. - Calculate eta(0.5):
julia> eta(0.5) -0.20788622497735404
Computes the Dirichlet eta function at
s = 0.5
, which gives approximately -0.20788622497735404.
The Dirichlet eta function is defined as follows:
Please note that the Dirichlet eta function is defined for complex numbers s
.
See Also
User Contributed Notes
Add a Note
The format of note supported is markdown, use triple backtick to start and end a code block.