# cis

cis(z)

Return \$\exp(iz)\$.

## Examples

cis(z)

The `cis(z)` function returns the complex exponential of `iz`, which is equivalent to `exp(iz)`.

``````julia> cis(π/2)
6.123233995736766e-17 + 1.0im``````

Here are some common examples of using `cis(z)`:

1. Calculate the complex exponential:

``````julia> z = 2 + 3im;
julia> cis(z)
-0.131202 + 0.991057im``````

The `cis(z)` function returns the complex exponential of `z`.

2. Generate points on the unit circle:
``````julia> angles = range(0, stop=2π, length=8);
julia> points = cis.(angles)
8-element Vector{ComplexF64}:
1.0 + 0.0im
0.7071067811865476 + 0.7071067811865475im
6.123233995736766e-17 + 1.0im
-0.7071067811865475 + 0.7071067811865476im
-1.0 + 1.2246467991473532e-16im
-0.7071067811865477 - 0.7071067811865474im
-1.8369701987210297e-16 - 1.0im
0.7071067811865474 - 0.7071067811865477im``````

This example generates complex points on the unit circle using `cis(z)`.

Remember, the `cis(z)` function is equivalent to `exp(iz)`, where `z` is a complex number.